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A discrete formulation of hydrodynamics was recently introduced, whose most 
important feature is that it is exactly renormatizable. Previous numerical work 
has found that it provides a more efficient and rapidly convergent method for 
calculating transport coefficients than the usual Green-Kubo method. The 
latter's convergence difficulties are due to the well-known "long-time tail" of the 
time correlation function which must be integrated over time. The purpose of 
the present paper is to present additional evidence that these difficulties are 
really absent in the discrete equation of motion approach. The "memory" terms 
in the equation of motion are calculated accurately, and shown to decay much 
more rapidly with time than the equilibrium time correlations do. 
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1, I N T R O D U C T I O N  

In  this p a p e r  we repor t  numer ica l  results for sof t-sphere equat ions  of 
mo t ion  in a recent ly  in t roduced  exact ly  r enorma l i zab le  discrete fo rmula t ion  
of hyd rodynamics .  ~/  W e  begin  by  reviewing the reasons for expect ing such 
a fo rmula t ion  to be useful. Renorma l i za t ion  me thods  m a y  be app l i ed  
whenever  one wishes to descr ibe  a system on several  different  length (and  
in our  case also t ime) scales. (3'4) Typica l ly  one knows the laws governing 

the system on a mic roscop ic  scale (the in te ra tomic  poten t ia l  in a fluid, or  
the spin H a m i l t o n i a n  in a magne t i c  latt ice) and  wishes to pred ic t  the results 
of an  exper iment  on a macroscop ic  scale (say a viscosity measu remen t  in 
the fluid, or  a suscept ibi l i ty  measu remen t  in the magnet) .  The  large-scale 
behav io r  can  be ca lcu la ted  di rec t ly  a n d  accura te ly  only in trivial  mode l  
systems. However ,  in magne t i c  systems it has  been  found  useful to increase  
the length scale in stages: combine  several  spins (8, in a s imple cubic  
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lattice) into one "block spin" and set up a new coarse-scale spin Hamilto- 
nian describing the behavior of the block spins. If the Hamiltonian is 
parametrized in terms of a set of Hamiltonian parameters, the coarse-scale 
parameters can sometimes be computed by a mathematical procedure from 
the original (fine-scale) parameters. Such a Hamiltonian is said to be 
renormalizable, and the procedure is called a renormalization transforma- 
tion. The properties of the system on an arbitrarily large (i.e., macroscopic) 
scale can be obtained by performing this transformation repeatedly. These 
renormalization transformations have proved to be enormously useful in 
predicting macroscopic behavior near critical points (critical exponents, 
etc.). Other methods, such as series expansions of correlation functions via 
graphical perturbation methods, are very singular and suffer severe conver- 
gence problems (5'6) due to the long spatial range of the correlations near a 
critical point. 

A noncritical fluid is a very different physical system from a critical 
magnetic lattice, but the basic problem of deducing macroscopic behavior 
from microscopic laws is the same. A further similarity is that series 
expansions (in the density) obtained from graphical perturbation theories 
are singular in fluids. (7) The singularities in this case do not reflect spatially 
long ranged equal-time correlations, but long ranged two-time correlations 
(the "long-time-tails"). (8~ Direct calculations of time correlation functions 
(such as those required in Green-Kubo (9,m) calculations of transport 
coefficients) have severe convergence problems as a result of these tails. 

It would appear, therefore, that a renormalizable theory of fluids 
would be of interest: one should look for a description of a fluid on a 
particular distance scale W, i.e., a discrete description, and a way of 
transforming it into a description on a scale 2 W. Since fluids are usually 
described by equations of motion rather than Hamiltonians (Hamiltonian 
descriptions of dissipative systems being very awkward), we should look for 
an equation of motion describing the system on our distance scale W. Since 
some of the singularities we wish to avoid are associated with long-time 
correlations, we should also be able to coarsen the time scale. This can be 
done if the description is discrete in time; let us denote the time scale 
associated with a particular equation of motion by ~-. Such a renormalizable 
discrete theory has been developed by one of us, (~'2) and is sketched in the 
next section. 

2. DISCRETE HYDRODYNAMICS: A RENORMALIZABLE 
FORMULATION 

We would like to find a renormalizable discrete analog of the contin- 
uum Navier-Stokes equations of motion. It should specify how some 



Tail Shortening by Discrete Hydrodynamics 391 

discrete analogs of the continuum hydrodynamic variables change with 
time. The continuum densities of the five conserved hydrodynamic quanti- 
ties (particle number, energy, and momentum, labeled below N, E, Px, Py, 
and Pz) have obvious discrete analogs, given our desired length and time 
scales W and ~. These analogs are the contents of the conserved quantities 
in cubical cells of width W, at times mr (m = integer). We shall denote the 
content of the quantity labeled e~ (a = N, E, Px, Py, or Pz) in a cell labeled l 
by c(~, l, m). The continuum equations predict fluxes; the discrete analog of 
a flux is evidently a transfer: the amount of a quantity c~ (=  N, E, or P)  
transferred across a square face (labeled f )  during the time interval 
[m~-, (m + 1)~-]. We shall label this interval by its midpoint m + 1/2. The 
transfer will be denoted x(~, f,  m + 1/2). 

What do we mean by "predicting" the transfer x(c~, f,  1/2), over the 
time interval [0, ~-], from information about the previous state of the system? 
The maximum amount of such information we could have at time 0 would 
be the contents c(~,l,O) at time 0 and the previous transfers x(e~, f ,m < O) 
(note that the previous contents are completely determined by these data.) 
These "history variables" at times m ~< 0 do not determine the future 
transfers uniquely, of course. But we expect them to determine some sort of 
average values for the transfers. This can be made precise by defining, for 
each set of values for the history variables, the ensemble of systems having 
exactly these values. The ensemble distribution function is taken to be 
uniform within the phase space satisfying this criterion; it is written down 
explicitly in Ref. 1. 

The best prediction for the transfer x(a,  f,  1/2) is then its mean value 
in this ensemble, which we shall denote by [x(c~, f,  1/2)]. The mean [x] is a 
function of the assumed values of the history variables h; this function is 
the discrete analog of the continuum equation of motion. However, this 
function does not determine the system's dynamics uniquely, since it 
contains no information on fluctuations and correlations among the trans- 
fers. More importantly, it is not renormalizable, i.e., it does not determine 
the corresponding function for cells of width 2 W. Renormalizability re- 
quires complete information on the probability distribution of the transfers; 
in principle this is contained in the set of all moments of the transfers (all 
means of products). Therefore we define the "discrete equation of motion" 
to be this set of moments, each of them a function of all history variables 
(contents at time 0 and earlier transfers). 

For purposes of numerical calculation, we shall parametrize this equa- 
tion of motion. In linear hydrodynamic systems we expect the fluxes to be 
proportional to density gradients; in our discrete analog the transfers 
should be proportional to content differences. We may exploit this expecta- 
tion with no loss of generality by expanding the flux moments in power 
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series in their arguments, the history variables. Then the expansion of the 
mean [x(a, f, 1/2)] has the form 

[ x ]  = Esx; h+ . . -  (2.1) 
h 

where the power-series coefficient Bx; h describes the influence on the 
transfer x of the history variable h (a content or previous transfer; the sum 
ranges over all a, all cells, and all times). We have eliminated constant 
terms in the expansion by replacing the transfers and contents by their 
deviations from their equilibrium values. Some of the nonlinear coefficients 
denoted by �9 �9 �9 in Eq. (2.1) have been included in previous calculations (I1) 
and found to change the results by only one or two percent; for simplicity 
we will omit them here. Higher moments of the transfers have expansions 
similar to Eq. (2.1). (2) We will refer to the totality of all coefficients in Eq. 
(2.1) and these higher equations as the equation of motion parameters ("the 
B's"). Though the above procedure formally defines Bx; h uniquely, it is not 
easy to make rigorous, since the functions we expand in power series are 
highly singular. (1'2) We believe, however, that Bx; h can be uniquely defined 
in terms of moments [see Eq. (2.2) below]. 

We now argue that the discrete equation of motion is exactly re- 
normalizable. In a well-behaved system the discrete equation of motion 
uniquely determines the equilibrium correlations of the discrete variables (a 
more careful discussion of this point is to be found in Ref. 1). These 
correlations trivially determine the correlations of the coarse-scale variables 
(contents and transfers for cells of width 2W, which are just sums of the 
fine-scale variables). These in turn determine (j) the coarse-scale equation of 
motion. The result is that the discrete equation of motion is exactly 
renormalizable in space, and the same reasoning shows it to be exactly 
renormalizable in time as well. 

This renormalizability means that in principle the equation of motion 
parameters B for cell size W and time interval ~- exactly determine those for 
cells of size 2W and /o r  time 2T. An explicit coarsening procedure for 
computing them has been given. (2'12) Fixed points under coarsening trans- 
formations have been found numerically for simple dissipative systems (12) 
which are analogous to the fixed points studied in critical phenomena; in 
fact the fixed points of a simple critical system (the Gaussian model) have 
also been computed. (13) 

In the present paper, however, we are interested in the calculation of 
transport coefficients in fluids, from molecular force laws. A renormalizable 
formulation of hydrodynamics allows us to do this by a three-stage process: 
(1) the molecular laws can be related to microscopic-cell discrete equations 
of motion (EOMs), (2) these can be transformed into macroscopic-cell 
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discrete EOMs, (3) which can in turn be used to determine transport 
coefficients. Step (1), the computation of the microscopic discrete EOM 
parameters Bx; h [Eq. (2.1)] can be accomplished by molecular dynamics 
simulation, using a procedure described in detail in Ref. 17. This is done by 
computing equilibrium averages (denoted by < >) of products of discrete 
variables. An equation from which B~; h can then be calculated is obtained 
by multiplying Eq. (2.1) by the history variable h' and averaging it over the 
equilibrium ensemble: 

<xh'> = ~ Bx;h<hh' > (2.2) 
a 

Methods for the solution of Eq. (2.2) are described in detail in Section 3. 
Step (3), the calculation of transport coefficients, is easy to do in the 
large-cell limit. We need only apply the equation of motion to a uniform- 
gradient system and look at the resulting flux [see Eq. (4.1)]. In the large 
cell limit, fluctuations are negligible (relative to mean values) and this can 
be done unambiguously. One does not expect to need enormously large 
cells to get essentially the macroscopic transport coefficients; these should 
become independent of cell size W very rapidly as one doubles W. In fact, 
it appears from previous numerical work (1134) that the W we have used in 
step (1) gives a good approximation, i.e., step (2) has little effect on the 
outcome. We shall therefore defer the numerical renormalization procedure 
to a later paper, and concentrate here on step (1). 

As mentioned in Section 1, the motivation for our approach was that 
the renormalization technique might allow us to avoid the serious conver- 
gence problems of the Green-Kubo method, which arise from the long- 
time tail of time correlation functions. It is important to determine whether 
we have indeed avoided them, or whether they are going to appear in some 
other form. Since the tails are not important at macroscopic times, such 
problems are most likely to appear in the small-cell EOM parameters Bx; h. 
Among these are parameters Bx;x, which describe the dependence of 
x ( a , f ,  1/2) on a previous transfer x ( a ' , f ' , r n ' <  0). If these "memory" 
parameters have a long-time (large [in'[) tail like the time correlation 
functions, we are in trouble. One can argue theoretically that they should 
not. (15~ The equilibrium correlation <xx'> between two transfers (or fluxes) 
can be thought of as measuring how much information the knowledge of x' 
gives about x; this can be substantial even if the transfers are widely 
separated in time because they may both be part of a large-scale eddy 
fluctuation. The parameter Bx;x, , on the other hand, measures how much 
additional information x' (at a time rn'r < 0) provides about x (at time 
r /2) ,  when the variables at all intervening times are fixed and known. In 
other words, B~; x, describes a highly constrained ensemble in which large- 
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scale eddy fluctuations are frozen; we do not expect to see the long-time 
tail effects. However, previous numerical results have not been accurate 
enough to verify this unambiguously. It is the principal purpose of this 
paper to present numerical proof of this (see Section 5). We begin, in the 
next section, by describing the calculation of the equation-of-motion 
parameters. 

3. CALCULATION OF EQUATION-OF-MOTION COEFFICIENTS 

Equations (2.2) involve an infinite number of equation-of-motion 
coefficients B~; h. We must somehow choose 2 a finite subset of these, which 
we shall call ~LIST, to include in the calculation. Equations (2.2) contain an 
equation for each Bx; h, in BLIST, with left-hand side (xh'> and many  terms 
involving other B's in BLIST and various averages (hh'> on the right-hand 
side. Though the number of such terms is finite, it is very large, and many 
of the terms are numerically negligible. Since the computation of (hh'> 
from molecular dynamics data is quite time-consuming, we shall use only 
the most important terms on the right-hand side. 

In choosing BLIST we must be guided by our intuitive expectation that 
the transfer x will be most influenced by history variables h which are 
nearby in space and time, and that the influence will generally decrease 
with distance. This assumption may then be justified a posteriori by the 
numerical results. Thus a B~; h which is important is assumed to have some 
neighbor (in space or time) which is more important. This suggests an 
iterative algorithm for choosing BUST which works its way out through less 
and less important Bx; h by enumerating the neighbors of h's already 
included. Such an algorithm must begin with a small "startup" RLIST, which 
contains enough Bx;h's so all others can be reached by chains of neighbors. 

A specific algorithm for solving Eq. (2.2) by enlarging BLIST was 
described in Ref. 11. It was a term-oriented algorithm, in the sense that 
TLIST, a list of terms Bx;h(hh' > appearing on the right-hand side of Eq. (2.2), 
was kept, along with BLrST and a list of averages AVLIST. When BLIST was 
enlarged by adding neighbors of B~;h, TLIST and AVLIST were also enlarged 
in a prescribed way. This scheme has several disadvantages: (1) The list of 
terms is very long, and enumerating all the neighbors of several hundred 
terms by hand is a tedious and error-prone procedure, and (2) the matrix 
coupling the B's in Eq. (2.2) (essentially the covariance matrix of the 

2 The problem of choosing which B's are most significant has often been addressed in the 
literature of linear regression theory. The present problem differs from most of this work in 
that the number of h's is infinite. The possibility of leaving out terms is not usually 
considered. Our procedure has some resemblance to the method called "forward regression"; 
see for example Ref. 16. 
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history variables h) often has very small eigenvalues. This is due to 
approximate linear dependences among the history variables, a problem 
common in the literature of linear regression theory (16) and referred to as 
"multicollinearity." The result is that apparently small truncation errors in 
off-diagonal elements of the matrix can push the eigenvalue to zero and 
make the matrix singular. The symptoms of this phenomenon occur when a 
new B is added to BHST: values of other B's change by large amounts, and 
their statistical fluctuations increase suddenly. These problems can be 
avoided by being very conservative about omitting terms from Eq. (2.2), 
but this is very difficult when they must be enumerated by hand. 

The alternative to a term-oriented algorithm is an average-oriented 
one, in which only a BLIST and an AVLIST are kept. All terms involving these 
B's and averages are included, and are generated automatically. This is the 
approach used in the present paper. It requires a much more sophisticated 
set of programs. Each Bx; h (or (hh'>) may be rotated or translated into 
other positions by symmetry operations of the cubic group. (17) Only one of 
these positions should be listed in BLrSX (or AVLIST). Thus we require a 
criterion for determining this unique standard position, and an orienting 
algorithm for finding the standard position equivalent to any given initial 
position. Then the equations (2.2) may be generated automatically. For 
each Bx; h in BLIST, we consider in turn each Bx; h, from BLIST. A rotation 
algorithm enumerates all equivalent rotated positions for h'. Each of these 
determines an average (hh'), which must be oriented into its standard 
position before being looked up in AVLIST. 

Once we have such a program for creating and solving Eqs. (2.2) for a 
given BLIST and AVLIST, we need only find an iterative procedure for 
expanding these lists. We may begin by enumerating all neighbors of each 
Bx; h in BLIST. If h is a content c(a,l ,m), for example, its neighbors are 
c(a, t', m), where the cell l '  is displaced from l by one unit along any axis, 
or c(a , l ,m - 1) which has been displaced in time. This gives us a supple- 
mentary list we may call BNBR. We cannot include all these in the new 
BLIST, since such a procedure would never terminate. To keep BLIST short, 
we require that a new member be both statistically significant and impor- 
tant. The latter two notions require definition. 

A number of tests of significance exist in the literature of linear 
regression,(16) most of which involve comparing an estimate of Bx. h to an 
estimate of its variance, o(Bx;h). The significance ratio Bx;h/ol/2(Bx;h) has 
roughly a Student t-distribution (which is approximately a Gaussian distri- 
bution of variance 1). We have estimated Bx; h from its Eq. (2.2) using the 
B's in BLrST on the right-hand side: 

(xh> = Bx;h(h2> + ~ Bx;h,(h'h > (3.1) 
Bx; h, E BLIST 
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We have estimated its variance as the standard deviation of the mean of 
results from four molecular-dynamics runs. One could then regard Bx; h as 
significant when the significance ratio exceeds (in absolute value) some 
fixed value, say 1.0. The probability of this occurring spuriously when the 
correct value of B is zero is (according to the t distribution) about 40%; It is 
quite likely to occur for at least one of the seven neighbors of a B. Thus this 
is an unacceptable method, which can add infinite chains of spuriously 
significant Bs. Increasing the required significance ratio to 2.0 or 3.0 is not 
desirable, since it would lead to loss of much information which probably is 
significant. We may take advantage of our expectation that the B's drop off 
fairly rapidly as one moves away from the startup B's to construct a 
compromise criterion: Bx; h is significant if (a) [Bx;h/o ] > 1 and (b) this ratio 
exceeds 2 for either B or some neighbor and (c) this ratio exceeds 3.0 for B, 
some neighbor, or some neighbor's neighbor, and (d) . . . .  The series of 
tests (a), (b), (c), (d) . . . .  is to be terminated when the set of neighbors 
involved includes a startup B; these cannot be expected to have larger 
neighbors. This criterion prevents long chains of spurious B's, without 
ignoring the last in a series of genuinely significant B's. 

The procedure just described for enlarging BLIS'r will terminate when 
all statistically significant B's have been computed. However, often one is 
primarily interested in some specific function of the B's, say F( (B}) ;  F 
could, for example, be the viscosity. Many of the B's could be omitted with 
virtually no effect on F. To identify these, we define the "importance" of 
Bx; h, called AF(Bx;h), as the change in F caused by adding Bx; h to the BLIST 
used in computing F. It may be computed by actually subtracting two 
values of F, or by a linear approximation (computing the derivative of F 
with respect to B, and multiplying by the value of B). We may then call B 
"important" if AF(B) exceeds some tolerance to which we would like to 
calculate F, say FTOL. 

The practical lower limit on FTOL is set by the statistical uncertainty of 
F; there is no point trying to lower FTOL (effectively a truncation uncer- 
tainty) very far below this. Since the statistical uncertainty is initially 
unknown, we set rTOL equal to some large value initially, and lower it as 
BLIST is enlarged. 

We have not yet described the procedure for enlarging AVLIST. This is 
done by defining 2~F((hh')) as the change in the final result F due to 
including the average (hh'). Computing AF((hh')) involves knowledge of 
all the terms in which this average (or an equivalent one) appears. If 
[AF((hh'))l > S x rTOL we regard (hh') as important and add all its 
neighbors to AVLIST. They are then computed from the molecular dynamics 
data before proceeding. The coefficient S is a safety factor, which we have 
taken to be 1/4. This causes the algorithm to be very conservative about 
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omitting averages, to avoid the singularity problems mentioned at the 
beginning of this section. 

We have not yet specified the startup lists BLIST and AVHST. The 
simplest choice is to use one B from each equivalence class under the 
neighbor relation defined above, i.e., essentially one for each pair of a's. 
We have done this in the present calculation, and similarly for the averages. 
Earlier calculations (11) used a more complicated notion of "neighbor" 
which led to a smaller startup BLIST. With an automated program for 
generating Eqs. (2.2) this is no longer so advantageous; in fact with the old 
startup BLIST we wasted several iterations getting to the point where we now 
begin. 

A total truncation uncertainty for F can be defined (1~ as the square 
root of the sum of the squares of AF(B) for B in BNBR (i.e., not in BLTST). In 
the present work we have calculated this for several functions F({B }): not 
only the viscosity but each B itself (whose value changes when BLIST is 
augmented). It is always possible to make the truncation uncertainty 
considerably less than the statistical uncertainty; when this has been done 
we give only the statistical uncertainty. However, for relatively unimportant 
B's this is not necessary, and we quote the larger truncation uncertainty 
(see Figs. 1 and 2). 

4. NUMERICAL RESULTS 

We have calculated the equation-of-motion parameters Bx; h for a 
system of 32 soft spheres, using the algorithm of Section 3 to solve Eq. 
(2.2). The required cell-variable averages were computed as in Ref. 14, 
using the molecular dynamics integration algorithm of Verlet, (18) in which 
coupled first-order Hamilton equations for the particle positions and veloci- 
ties are integrated numerically. We chose the cell width W so that each cell 
has an average of four particles. Thus the system has eight such cells, 
arranged in a cube. We used an integration interval At = 0.0099s 
(M/kT)1/2; this was sufficiently small that the total energy was conserved 
to one part in 103 . We use the standard dimensionless units for soft 
spheres (19) (length unit = effective radius s, energy unit = kT, mass unit 
= particle mass M.) Previous discrete hydrodynamics calculations (1~'14) 
have used a system with reduced density (19) Dr = 0.6, at which the viscosity 
is about 50% higher than that given by the Enskog theory. (19) Good 
agreement with independent calculations of the viscosity by Ashurst and 
Hoover (19) was obtained. To provide another test of the discrete technique, 
we have used a higher density Pr = 0.8. This is almost the freezing density 
(0r = 0.813) -(19) In fact the 32-partMe system shows a tendency to freeze 
even at Dr = 0 . 8 ,  because of periodic boundary effects. The nucleation rate 
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Fig. 1. Longitudinal momentum transfer equation-of-motion parameters Bx;t, , for x 
= transfer of longitudinal momentum (Px) across the face outlined with heavy lines. For each 
content or transfer h, Bx; h is written in the cell or face where h is located. For clarity, only the 
contents h = c(a, l, 0) are used in (a), in the format B,; h _+ statistical uncertainty (or truncation 
uncertainty if it is larger; this is indicated by an asterisk). The right-most symbol is a, i.e., E, 
N, or an arrow indicating a momentum direction. The effects of previous x-transfers 
h = x(a, f , -  1/2) are given in (b) in the same format, with x ( a , f , - 3 / 2 ) ,  x ( a , f , - 5 / 2 )  
directly below. [When x(a, f, - 1 / 2 )  or x(a, f, - 3 / 2 )  is not in BLIST, its place is held by 
asterisks: ***.] Part (c) gives the effects o f y  transfers. 
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is low enough, however, that a solid formed only three times during our 
simulation of 18,000At. Each time, we backed up to a time before nucle- 
ation began and perturbed the trajectories slightly, by integrating for 400 
steps of length At~2, and then continued with steps of length At. This was 
sufficient to prevent the nucleation, and provided a simulation of a meta- 
stable liquid. 

The data were analyzed by computing cell contents and transfers for 
cells of width W =  1.523, with transfer time ~- = 0.1981 (i.e., 20At). 

We have calculated Bx; h for two types of transfer: longitudinal mo- 
mentum and shear momentum. The numerical results are presented in Figs. 
1 and 2, respectively. The numbers there are the Bx;h's in BLIST. In the 
longitudinal case, we regarded each B in BLIST as one of the desired final 
results ( F  in the algorithm of Section 3) determining importances of B's 
and averages; this causes the algorithm to try to minimize truncation errors 
of the most important B's. In the shear case, we are ultimately interested in 
calculating the viscosity ,/: 

W2 - 1/2 
= M p - -  ~Bx<p:,:,,/2);~(pyj,o)(l-f)+ ~ ~,, ~Bx(e,,:,,/:);~(?,,f,m ) 

"r l m = - c o f ,  

(4.1) 

The faces f and f '  are normal to the x direction. Equation (4.1) is derived in 
Ref. 15 by considering a system with a uniform velocity gradient; , / i s  the 
ratio between the mean transfer of shear momentum [[x(Py, f,  1/2)], from 
Eq. (2.1)] and the velocity gradient. We have omitted here some numeri- 
cally small terms. We have used ~/ as F in our calculation of the shear 
transfers, so the algorithm tried to minimize the truncation uncertainty of 7/. 
Unfortunately, it turned out that the value chosen for T was too large to 
provide a realistic estimate of ~/ in a 2 x 2 x 2 system of cells. In such a 
small system, only the effects of momentum contents of cells actually 
touching the plane of the transfer x can be computed (17) (see Fig. 2). If 
momentum travels across the face from further away, this information is 
lost because of the periodic boundary conditions, leading to an underesti- 
mate of the viscosity. The same problem occurred in a previous viscosity 
calculation at the lower density Or = 0"6; (14) it is solvable by using a smaller 
% which we intend to do. There are several indications that this is 
happening: (i) The influence of the cell at the upper right in Fig. 2a, which 
touches the face of the predicted transfer only along an edge, is as large as 
that of the lower right cell, which touches the face everywhere. This 
suggests that the momentum can move quite far during ~-. (ii) The fraction 
of the Py content of a column of cells (in a 2 x 2 x 2 system, just the two 
cells just mentioned) which leaves it in time z is four times the sum of these 
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two Bx;c's, or about 0.83. It was argued in Ref. 14 that this suggests that 
shear momentum probably travels across more than one cell. (iii) The 
actual viscosity estimate [Eq. (4.1)] implied by Fig. 2 is about 3.2, compared 
to Ashurst and Hoover's ~/= 5.4 ___ 0.5. (19) 

It is known (~2'~5) that transport coefficients are very sensitive to small 
changes in Bx; ~ for distant cell contents c, and may therefore have large 
errors in a finite-system simulation even when the nearby Bx;jS have 
essentially their infinite-system values. So this difficulty in calculating 
should not deter us from taking seriously the general behavior of the 
equations of motion. 

It can be seen from Figs. 1 and 2 that the results are now accurate 
enough to give a good general picture of the discrete equations of motion, 
at least for a periodic system. Our original expectation, that the influences 
of history variables decrease as they get farther in space or time from the 
predicted transfer, is confirmed. It is noteworthy that while the total effect 

I I 

i I 

A 

Fig. 2. Shear  m o m e n t u m  t ransfer  equa t ion-of -mot ion  pa rame te r s  Bx; h, where  x = shear  
m o m e n t u m  (Py) t ransfer  across the heavy  face. F o r m a t  is the same as in Fig. 1. 
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of the variables at time m decreases rapidly as m decreases beyond - i / 2 ,  
the spatial range broadens. This is intuitively reasonable, and has the 
consequence that the influences of the transfers x(e~, f,m) across a fixed 
face f do not decrease monotonically as m decreases. 

5. LONG-TIME TAILS 

The most familiar method for obtaining transport coefficients from 
molecular-dynamics simulations is the Green-Kubo method. In this 
method each transport coefficient is expressed as a time integral of an 
equilibrium time-correlation function (9) (a shear-shear correlation in the 
case of viscosity). It therefore requires knowledge of the correlation func- 
tion at large times t. When the Green-Kubo technique was first pro- 
posed, (1~ this was not thought to be a serious problem, because it was 
thought that the correlations would die out exponentially, in one or two 
mean collision times. The inefficiency of the Green-Kubo method lies in 
the fact that this is not true; times greater than a mean collision time 
contribute greatly to the time integral. (2~ In fact the correlation function 
does not die out exponentially at all; it has a power-law decay (8'21) (t -3/a 
in three dimensions). The correlation function is therefore "nonlocal" in 
time (and in space as well); accurate transport coefficient calculations 
require simulating large systems for long times. 

The essential claim we have made (15) for the discrete equation-of- 
motion approach is that it is local: the transfer across a face depends only 
on nearby contents and nearby, recent transfers. This claim requires 
justification, since the equation-of-motion coefficients Bx; x in Eq. (2.1) 
represent a "memory" effect of an earlier transfer on the transfer at time 
1/2. One might guess that these would have the same long-time behavior as 
the time correlation function, as we mentioned in Section 2. In fact, it is 
often said that fluid equations of motion must be nonlocal if the correla- 
tions are. This belief arises in part from study of very simple linear 
models (22) in which a non-Markoffian (i.e., nonlocal in time) time correla- 
tion function rigorously requires a non-Markoffian equation of motion 
("memory function"). However, these models are so oversimplified that the 
generalization to a real fluid seems very risky (for example, the models lack 
"mode coupling," which has been shown (2~) to be necessary in order to 
obtain long-time tails in the first place). And there is definite evidence for 
the contrary viewpoint, that long-time tails are perfectly consistent with a 
local, Markoffian equation of motion. In fact in Alder and Wainwright's 
original paper (8) demonstrating the existence of the long-time tail and its 
origin in long-lived "vortices" associated with a moving particle, they also 
showed that these phenomena could be quantitatively reproduced by 
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solving discretized Navier-Stokes equations (i.e., equations of motion local 
in time and space, similar in form to those of our theory). 

The present numerical calculations are the first which are accurate and 
extensive enough to address directly the question of whether the B's have 
long tails. In Fig. 3 we have plotted Bx(a,fj/2);x(~,/,m), the "tail" of the 
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Fig. 3. Comparison of normalized time-correlation function ( x ( a , f ,  1 / 2 ) x ( a , f , m ) ) /  
(x(ot, f, 1/2)2) ,  labeled TCF,  with cor responding  equa t ion-of -mot ion  coeff icients  
B;,(,~,f,l/2);x(~,,f,m). Where error bars are not shown, errors are less than the symbol size. 
(a) Shear transfer for viscosity calculation (a = Py) (b) Longitudinal momentum transfer 
(a = Px). 
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discrete equation of motion, against the negative time m. The equation (2.2) 
for each of these B's has (x(a, f, 1/2)x(a, f ,m)) on the left-hand side. In 
fact, if all terms but the diagonal one (h = h') are ignored on the right-hand 
side, one obtains the estimate Bx;x,--,(x(a, f, 1/2)x(a, f, m)) / (x(a, f, m)2), 
a normalized time correlation function. It is therefore natural to include the 
latter in Fig. 3 for comparison to Bx; x. It can be seen that the behaviors are 
markedly different. The time correlation function drops off very slowly, 
consistently with power-law behavior. The equation-of-motion coefficients 
B, on the other hand, drop off much more rapidly with time, decreasing on 
the average by a factor of 2 for each time interval r. In fact, the ratio of 
successive B's which best fits the data is 0.556 for shear transfer and 0.562 
for longitudinal transfer. 

As mentioned above, the time correlation function is expected to 
behave as t-3/2 at very long times. We have not attempted to fit it to this 
form because it has been found previously (2~ that other contributions 
remain important for quite a long time, perhaps as long as the 5r we have 
included here. In particular, it is likely that viscoelastic effects (23) contrib- 
ute strongly to the short-time shear-shear correlation at high densities such 
as we have used. Such questions are irrelevant to the fundamental conclu- 
sion which can be drawn from Fig. 3, namely, that the discrete method 
provides a much more rapidly convergent method for calculating the 
viscosity than the Green-Kubo method. 

The last TCF in Fig. 3 is about five times larger than the last Bx; x. The 
uncertainty associated with truncating the series of TCFs is much greater 
than five times that associated with the B's since TCF decreases so slowly. 
In fact, the advantage of calculating ~ from the B's is even greater than 
this, since B~; x enters ~/ in a qualitatively different way than the time 
correlation function enters the Green-Kubo ~/. The latter is simply the time 
integral of the time correlation function, i.e., essentially the sum of the 
discrete (x(a, f, 1/2)x(a, f ' ,m)). Our expression for the viscosity, on the 
other hand [obtained by solving Eq. (4.1)], depends mostly on Bx; c, i.e., on 
the effects of cell contents (Fig. 2a). The sum of the Bx;x'S affects ~/by less 
than 20%, entering as a factor (1 - ~ B , ; x )  -1. Thus the uncertainty intro- 
duced by truncating the TCFs is more than 25 times greater than that due 
to truncating the B's. 

The essential result of this paper is therefore that the discrete method 
effectively eliminates long-time memory behavior as the accuracy-limiting 
factor in viscosity calculations via molecular dynamics. The limitations of 
system-size dependence and cell-size dependence remain, of course, but the 
former is no worse than in the Green-Kubo or nonequilibrium molecular 
dynamics (19) methods, and the latter appears to be a small effect (~) and 
can at any rate be treated precisely by renormalization techniques. (2'12) 
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